Cable Assemblies with High Phase Stability for Measuring Instruments 0 Series

The 0 series cable assemblies offer excellent phase stability against temperature fluctuation sand bending.

They are ideal for connecting to vector network analyzers for precision measurement.

(Continuous operating temperature range : from -30 to +85 °C)

Cables are offered in wide range of the frequencies of 26.5, 50, 67, 70, 110, 120 and 145 GHz with various connectors.

Center Conductor	Dielectric	1st Outer Conductor	2nd Outer Conductor	Sheath	Armored	Braid	Sheath
Silver Plated Copper	Low Density PTFE	Silver Plated Copper Tape	Silver Plated Copper Braid	Fluoropolymer	SUS Spiral Tube	Silver Plated Copper Braid	Polyester Fiber

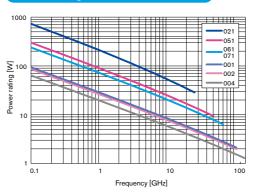
0 Series Typical Insertion Loss

Simple Criteria for Cable Selection				
Insertion Loss	The larger the cable outer diameter, the lower the insertion loss.			
Frequency Range	The smaller the cable, the higher mode frequency.			
Power Rating	The larger the cable outer diameter, the higher the power rating.			
Flexibility	The smaller the cable, the better the flexibility.			
Mass	The smaller the cable, the lighter the cable.			

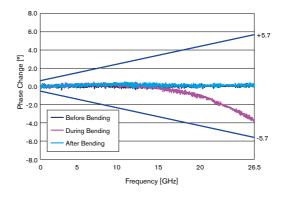
Power Rating

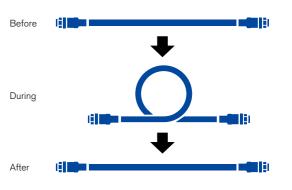
0-1

The diagram to the right shows the relationship between frequency and power rating.


The values are calculated at 25 °C and at sea level.

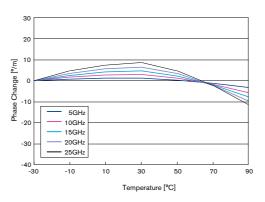
The power rating will need to be corrected for different ambient temperatures and altitude.


Power ratings may decrease, depending on the connector selected .


* The above figures are measured values for reference only.

Power Rating of 0 Series at Sea Level

021 Static Bending Data



The cable was wrapped 360° around φ60mm mandrel.

* Guaranteed value within ±5.7° at 26.5GHz (In shipping value)

021 Phase Change vs. Temperature

The cable was measured in chamber every 20 °C from -30 to 90 °C, 1 hour after the temperature changed.

0 Series

Placing orders

Catalog No.

Example.1 Cable: MWX021 - 01000 DFS DMS /B Cable: MWX021 Assembly Length: 1000 mm Connector I: 3.5 mm (f) Straight Connector II: 3.5 mm (m) Straight Armored: Armored-Type

Armored-Type cables will have a "/B" appended to the connector combination code. No appended to the connector combination code when cables are not armored type.

The unit of Assembly Length is mm. Shown as a five-digit number. If the number consists of fewer than five digits, remember to add zero (s) to the left of the first digit to make it five digits. The Assembly Length is measured based on the reference planes, not on the connector ends, shown at the figure to the left.

- The order of Connector I and Connector II is determined by the alphabetical order of the first letter of the Connector Code. In the case of DMS (3.5mm(m) and AMS (SMA(m), Connector I: AMS, Connector II: DMS
- The order of Connector I and Connector II when the first letter of the Connector Code is the same depends on the alphabetical order of the second and subsequent

In the case of DMS (3.5mm(m) and DFS (3.5mm(f), Connector 1: DFS, Connector II: DMS

Delivery time

O series will be shipped within 11 business days after received order.

* Leadtime may be effected by larger order volume.

Connector Codes

Connector		0 Series								
		021/B	051/B	051	061/B	061	071/B	001/B	002/B	004/B
Туре	Maximum Operating Frequency	26.5 GHz	50.0	GHz	67.0	GHz	70.0 GHz	110.0 GHz	120.0 GHz	145.0 GHz
N (m) Straight	18.0 GHz	NMS								
SMA (m) Straight	18.5 GHz	AMS								
SMA (f) Straight	18.5 GHz	AFS								
3.5 mm (m) Straight	26.5 GHz	DMS		DMS						
3.5 mm (m) Multi-Lock	26.5 GHz	DMP								
3.5 mm (m) Swept	26.5 GHz			DMW						
3.5 mm (f) Straight	26.5 GHz	DFS								
2.92 mm (m) Straight	40.0 GHz		KMS	KMS						
2.92 mm (m) Swept	40.0 GHz			KMW						
2.92 mm (f) Straight	40.0 GHz		KFS	KFS						
2.4 mm (m) Straight	50.0 GHz		LMS	LMS						
2.4 mm (m) Swept	50.0 GHz			LMW						
2.4 mm (f) Straight	50.0 GHz		LFS	LFS						
2.4 mm (f) NMD	50.0 GHz		LFD							
1.85 mm (m) Straight	67.0 GHz				VMS	VMS				
1.85 mm (m) Swept	67.0 GHz					VMW				
1.85 mm (f) Straight	67.0 GHz				VFS	VFS				
1.85 mm (f) NMD	67.0 GHz				VFD					
1.85 mm (m) Straight	70.0 GHz						VMS			
1.85 mm (f) Straight	70.0 GHz						VFD			
1.0 mm (m) Safety-Lock	110.0 GHz							WMT		
1.0 mm (f) Straight	110.0 GHz							WFS		
1.0 mm (m) Straight	110.0 GHz								WMS1	
1.0 mm (f) Straight	110.0 GHz								WFS1	
1.0 mm (m) Safety-Lock	120.0 GHz								WMT	
1.0 mm (m) Straight	120.0 GHz								WMS	
1.0 mm (f) Straight	120.0 GHz								WFS	
1.0 mm (m) Safety-Lock	130.0 GHz									WMT
1.0 mm (f) Straight	130.0 GHz									WFS
0.8 mm (m) Safety-Lock	145.0 GHz									MMT
0.8 mm (f) Straight	145.0 GHz									MFS

- The smallest frequency among the maximum operating frequencies of the connectors and cables to be used is the maximum operating frequency of the assembly.
- Please inquire separately for products with connector symbols in gray, as they require a longer delivery time.
- The lowest frequency among the maximum operating frequencies of the connectors and cables to be used is the maximum operating frequency of the assembly.
- For products with Connector Code in gray, please inquire separately as it takes time for delivery.

0-3

Features

- · Phase Stability: Static Bending
- Phase Stability: Temperature Change
- Maximum Operating Frequency: 26.5 GHz
- Temperature Range: -30 to 85°C
- Days to Ship: 11 Business Days
- RoHS Compliant

Property

Electrical Properties

Maximum Operating Frequency	26.5 GHz
Characteristic Impedance	50±1 Ω
Capacitance (Typical)	85 pF/m
Propagation Delay (Typical)	4.21 ns/m
Velocity of Propagation (Typical)	79 %
Higher Mode Frequency (Typical)	28 GHz
VSWR (Typical)	1.33
Maximum Frequency Insertion Loss (26.5 Ghz)	2.0 dB/m

Mechanical Properties

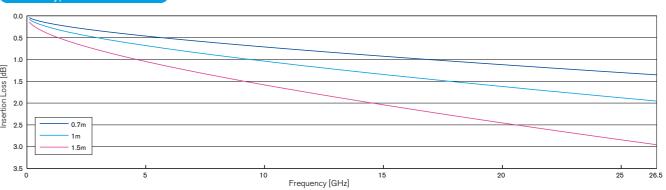
Cable Outer Diameter	8.5 mm
Minimum Bending Radius (Inner Side)	30 mm
Cable Mass (Typical)	122 g/m
Continuous Operating Temperature Range	-30~+85 °C
Armored Side Pressure	196 N/cm
Assembly Length	700~1,500 mm

Order Form Example Please provide the following information when placing an order.

Example MWX021

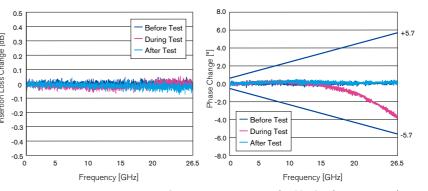
Assembly Length: 1000mm Connector I: 3.5 mm (f) Straight Connector II: 3.5 mm (m) Straight

Catalog No.


MWX021-01000DFSDMS/B

* See P. 0-4 "Connector Codes"

- a. Cable Type
- b. Assembly Length
- c. Connector
- d. Armored


Technical Data

Cable Typical Insertion Loss

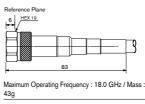
 $\textbf{Typical Insertion Loss} \ (0.67 \times (0.038 \times f \ [GHz] + 0.371 \times \sqrt{f} \ [GHz]) + 0.07) \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.67 \times (0.038 \times f \ [GHz] + 0.371 \times \sqrt{f} \ [GHz]) + 0.07) \times 1.12 \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.67 \times (0.038 \times f \ [GHz] + 0.371 \times \sqrt{f} \ [GHz]) + 0.07) \times 1.12 \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.67 \times (0.038 \times f \ [GHz] + 0.371 \times \sqrt{f} \ [GHz]) + 0.07) \times 1.12 \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.67 \times (0.038 \times f \ [GHz] + 0.371 \times \sqrt{f} \ [GHz]) + 0.07) \times 1.12 \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.67 \times (0.038 \times f \ [GHz] + 0.371 \times \sqrt{f} \ [GHz]) + 0.07) \times 1.12 \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.67 \times (0.038 \times f \ [GHz] + 0.371 \times \sqrt{f} \ [GHz]) + 0.07) \times 1.12 \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.67 \times (0.038 \times f \ [GHz] + 0.371 \times \sqrt{f} \ [GHz]) + 0.07) \times 1.12 \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.67 \times (0.038 \times f \ [GHz] + 0.371 \times \sqrt{f} \ [GHz]) + 0.071 \times \sqrt{f} \ [GHz] + 0.071 \times \sqrt{f} \ [GH$

Static Bending Data (Insertion Loss, Phase) Bending Radius : 30 mm

- * Guaranteed value within ±5.7° at 26.5 GHz (In shipping value)
- * The cable was wrapped 360° around ø60mm mandrel.

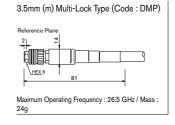
021 Phase Change vs. Temperature - 5GHz 10GHz 15GHz ---- 25GHz -10 30 50

The cable was measured in chamber every 20 °C from -30 to 90 °C, 1 hour after the temperature changed. Figure shows the excellent phase stability over the temperature changes.


3.5mm (f) Straight (Code : DFS)

Connector

SMA (m) Straight (Code : AMS)


Maximum Operating Frequency : 18.5 GHz / Mass :

N (m) Straight (Code: NMS)

Maximum Operating Frequency : 18.5 GHz / Mass :

SMA (f) Straight (Code: AFS)

*Refer to P0-4 Connector Code Table for othrer applicable connectors.

* The above figures are measured values for reference only.

3.5mm Connector "Multi-Lock Type" 3 Ways for Coupling

Snap-On Coupling

Coupling without screwing. Insert the cable connector and slide the coupling nut forward. It helps to reduce workload for users who have repeating insertion and extraction, such as production and testing line.

Hand Screw Coupling

After snap-on coupling, becomes stable. screw the coupling nut, then the connection This connector made the work-load 1/3 compared to the conventional ones.

Torque Wrench Coupling

Torque wrench management for more accurate measureis available at the HEX part with standard tightening, ment, such as calibration.

0-5

Technical Data

Features

- Phase Stability: Static Bending
- Phase Stability: Temperature Change
- Maximum Operating Frequency: 50.0 GHz
- Temperature Range: -30 to 85°C
- Days to Ship: 11 Business Days
- RoHS Compliant

Property

Electrical Properties

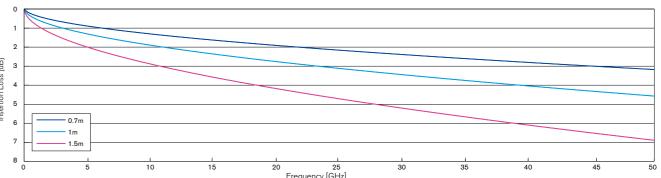
Maximum Operating Frequency	50.0 GHz
Characteristic Impedance	50±1 Ω
Capacitance (Typical)	85 pF/m
Propagation Delay (Typical)	4.19 ns/m
Velocity of Propagation (Typical)	79 %
Higher Mode Frequency (Typical)	61 GHz
VSWR (Typical)	1.46
Maximum Frequency Insertion Loss (50.0 GHz)	4.6 dB/m

Mechanical Properties

6.6 mm
30 mm
76 g/m
-30~+85 °C
196 N/cm
700~1,500 mm

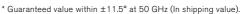
Order Form Example Please provide the following information when placing an order.

Example MWX051


Assembly Length: 1000mm Connector I: 2.4 mm (f) Straight Connector II: 2.4 mm (m) Straight

Catalog No.

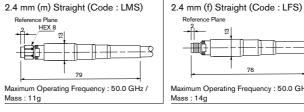
MWX051-01000LFSLMS/B

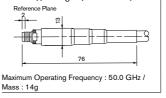

* See P. 0-4 "Connector Codes"

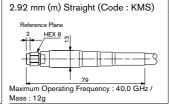
- b. Assembly Length
- c. Connector
- d. Armored

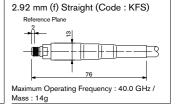
 $\textbf{Typical Insertion Loss} \ (0.0095 \times f[\text{GHz}] + 0.587 \times \sqrt{f[\text{GHz}] + 0.02}) \times L[m] \quad \textbf{Maximum Insertion Loss} \ (0.0095 \times f[\text{GHz}] + 0.587 \times \sqrt{f[\text{GHz}] + 0.02}) \times 1.12 \times L[m]$

Static Bending Data (Insertion Loss, Phase) Bending Radius : 30 mm Before Test During Test After Test Before Test - During Test After Test 50 Frequency [GHz] Frequency [GHz]


 * The cable was wrapped 360° around ø60mm mandrel.


051 Phase Change vs. Temperature - 10GH — 40GHz — 50GHz -10


The cable was measured in chamber every 20 $^{\circ}\text{C}$ from -30 to 90 °C, 1 hour after the temperature changed. Figure shows the excellent phase stability over the temperature changes.


Connector

NMD 2.4 mm (f) Straight (Code : LFD)

Non-armored type (2.4 mm and 2.92 mm connector) can be used for 051.

Please contact us.

0-7

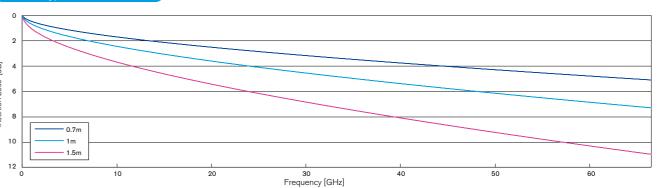
- Phase Stability: Static Bending
- Phase Stability: Temperature Change
- Maximum Operating Frequency: 67.0 GHz
- Temperature Range: -30 to 85°C
- Days to Ship: 11 Business Days
 - RoHS Compliant

Property

Electrical Properties

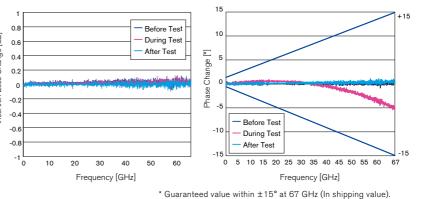
Maximum Operating Frequency	67.0 GHz		
Characteristic Impedance (Typical)	50±1 Ω		
Capacitance (Typical)	90 pF/m		
Propagation Delay (Typical)	4.35 ns/m		
Velocity of Propagation (Typical)	77 %		
Higher Mode Frequency (Typical)	70 GHz		
VSWR (Typical)	1.46		
Maximum Frequency Insertion Loss (67.0 GHz)	7.3 dB/m		

Mechanical Properties


Cable Outer Diameter	6.6 mm
Minimum Bending Radius (Inner Side)	30 mm
Cable Mass (Typical)	73 g/m
Continuous Operating Temperature Range	-30~+85 °C
Armored Side Pressure	196 N/cm
Assembly Length	700~1,500 mm

Order Form Example Please provide the following information when placing an order.

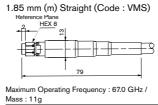
Example MWX061 * See P. 0-4 "Connector Codes" Assembly Length: 700 mm Connector I: 1.85 mm (f) Straight Connector II: 1.85 mm (m) Straight b. Assembly Length Catalog No. MWX061-00700VFSVMS/B c. Connector d. Armored


Technical Data

Cable Typical Insertion Loss

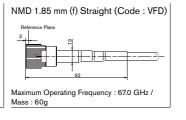
 $\textbf{Typical Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.702 \times \sqrt{f} \ [\text{GHz}] + 0.02) \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.702 \times \sqrt{f} \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.702 \times \sqrt{f} \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.702 \times \sqrt{f} \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.702 \times \sqrt{f} \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [m] \\ \textbf{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.702 \times \sqrt{f} \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.702 \times \sqrt{f} \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.702 \times \sqrt{f} \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.702 \times \sqrt{f} \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.702 \times \sqrt{f} \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.702 \times \sqrt{f} \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{GHz}] + 0.02) \times 1.12 \times L \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{Maximum Insertion Loss} \ (0.0232 \times f \ [\text{Max$

Static Bending Data (Insertion Loss, Phase) Bending Radius : 30 mm



- * The cable was wrapped 360° around ø60mm mandrel.

061 Phase Change vs. Temperature - 20GHz - 30GHz - 40GHz - 50GHz - 60GHz --- 67GHz -30 -10


The cable was measured in chamber every 20 °C from -30 to 90 °C, 1 hour after the temperature changed. Figure shows the excellent phase stability over the temperature changes.

Connector

Maximum Operating Frequency : 67.0 GHz / Mass: 14g

1.85 mm (f) Straight (Code: VFS)

*Refer to P0-4 Connector Code Table for other applicable connectors.

Non-armored type (1.85mm connector) can be used for 061. Please contact us.

__ 0.7m - 1.5m

Technical Data

Features

- Phase Stability: Static Bending
- Phase Stability: Temperature Change
- Maximum Operating Frequency: 70.0 GHz
- Temperature Range: -30 to 85°C
- Days to Ship: 11 Business Days

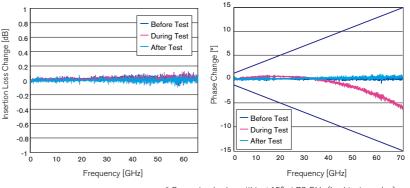
RoHS Compliant

Property

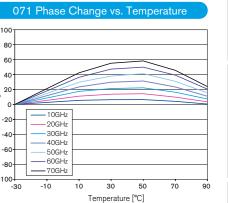
Electrical Properties

Maximum Operating Frequency	70.0 GHz		
Characteristic Impedance (Typical)	50±1 Ω		
Capacitance (Typical)	90 pF/m		
Propagation Delay (Typical)	4.35 ns/m		
Velocity of Propagation (Typical)	77 %		
Higher Mode Frequency (Typical)	70 GHz		
VSWR (Typical)	1.46		
Maximum Frequency Insertion Loss (70.0 GHz)	7.5 dB/m		

Mechanical Properties

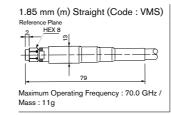

Cable Outer Diameter	6.6 mm
Minimum Bending Radius (Inner Side)	30 mm
Cable Mass (Typical)	73 g/m
Continuous Operating Temperature Range	-30~+85 °C
Armored Side Pressure	196 N/cm
Assembly Length	700~1,500 mm

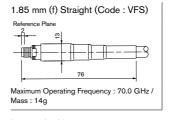
Order Form Example Please provide the following information when placing an order.


Example MWX071 * See P. 0-4 "Connector Codes" Assembly Length: 700 mm Connector I: 1.85 mm (f) Straight Connector II: 1.85 mm (m) Straight b. Assembly Length Catalog No. MWX071-00700VFSVMS/B c. Connector d. Armored

 $\textbf{Typical ilnsertion Loss} \ (0.0232 \times f[\text{GHz}] + 0.702 \sqrt{f[\text{GHz}] + 0.02}) \times L[m] \quad \textbf{Maximum Insertion Loss} \ (0.0232 \times f[\text{GHz}] + 0.702 \sqrt{f[\text{GHz}] + 0.02})) \times 1.12 \times L[m]$

Static Bending Data (Insertion Loss, Phase) Bending Radius : 30 mm




- * Guaranteed value within ±15° at 70 GHz (In shipping value).
- * The cable was wrapped 360° around ø60mm mandrel.

The cable was measured in chamber every 20 °C from -30 to 90 °C, 1 hour after the temperature changed. Figure shows the excellent phase stability over the temperature changes.

Connector

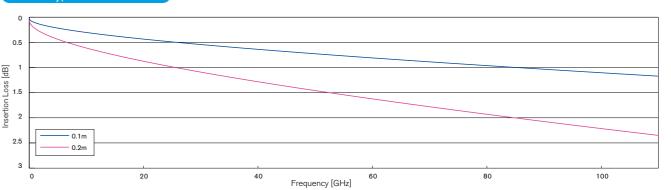
*Refer to P0-4 Connector Code Table for other applicable connectors.

Property

Electrical Properties

Maximum Operating Frequency	110.0 GHz		
Characteristic Impedance	50 Ω		
Capacitance (Typical)	88 pF/m		
Propagation Delay (Typical)	4.2 ns/m		
Velocity of Propagation (Typical)	79 %		
Higher Mode Frequency (Typical)	110 GHz		
VSWR (Typical)	1.43		
Maximum Frequency Insertion Loss (110.0 GHz)	11.8 dB/m		

Mechanical Properties

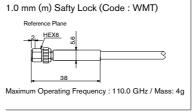

Cable Outer Diameter	4.0 mm
Minimum Bending Radius Inner Side)	15 mm
Cable Mass (Typical)	50 g/m
Continuous Operating Temperature Range	-30~+85 °C
Armored Side Pressure	157 N/cm
Assembly Length	100~200 mm

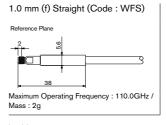
Order Form Example Please provide the following information when placing an order.

Example MWX001	* See P. 0-4 "Connector Codes"
Assembly Length: 100 mm Connector I: 1.0 mm (f) Straight	0.11
Connector II: 1.0 mm (m) Straight	a. Cable
Catalog No.	b. Assembly Length
MWX001-00100WFSWMT/B	c. Connector
a b c d	d. Armored

Cable Typical Insertion Loss

Technical Data




Static Bending Data (Insertion Loss, Phase) Bending Radius : 15 mm

* The cable was wrapped 90° around ø30mm mandrel.

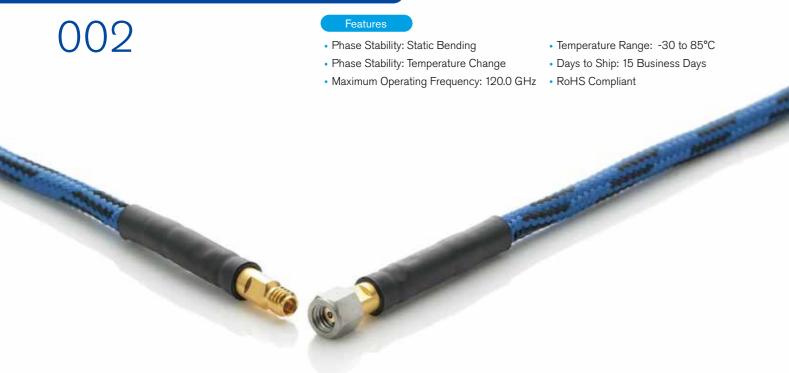
Connector

^{*}Refer to P0-4 Connector Code Table for other applicable connectors.

How to Use "Safety Lock Mechanism" of 1.0mm (m) Connector

Rotate the knurled parts and check the knurled screw thread. Central pin is located back side, seeing from the coupling nut side.

Same as the normal 1.0mm(m) connectors, it the coupling nut with female connector. They will be fixed under the condition that both connector's central axis is matched. Central pin has not connected yet.


Rotate the knurled parts, then let the cable side central pin forward, and insert to female connector's socket. With the help of fixed coupling nut, central axis is matched. This helps not to happen pin's slanting.

Technical Data

Property

Electrical Properties

Maximum Operating Frequency	120.0 GHz
Characteristic Impedance	50 Ω
Capacitance (Typical)	88 pF/m
Propagation Delay (Typical)	4.2 ns/m
Velocity of Propagation (Typical)	79 %
Higher Mode Frequency (Typical)	120 GHz
VSWR (Typical)	1.43
Maximum Frequency Insertion Loss (67.0 GHz) 120.0 GHz)	14.5 dB/m

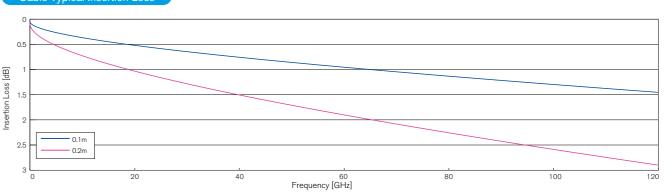
Mechanical Properties

Cable Outer Diameter	4.0 mm
Minimum Bending Radius (Inner Side)	15 mm
Cable Mass (Typical)	50 g/m
Continuous Operating Temperature Range	-30~+85 °C
Armored Side Pressure	157 N/cm
Assembly Length	100~200 mm

Order Form Example Please provide the following information when placing an order.

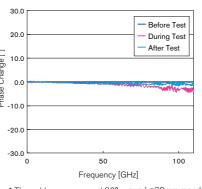
Example MWX002

Assembly Length: 100 mm Connector I: 1.0 mm (f) Straight

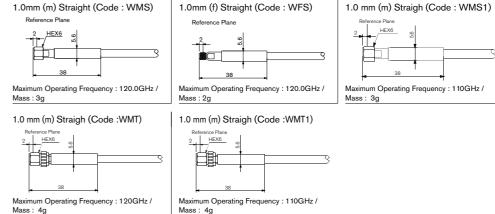

Connector II: 1.0 mm (m) Straight

Catalog No. MWX002-00100WFSWMT/B * See P. 0-4 "Connector Codes"

a. Cable


b. Assembly Length c. Connector

d. Armored


 $\textbf{Typical Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}] + 0.4} \times \text{L[m]} \\ \textbf{Maximum Insertion Loss} \ (0.035 \times f[\text{GHz}] + 0.9 \times \sqrt{f[\text{GHz}]$

Static Bending Data (Insertion Loss, Phase) Bending Radius

^{*} The cable was wrapped 90° around ø30mm mandrel.

Connector

^{*}Refer to P0-4 Connector Code Table for othrer applicable connectors.

How to Use "Safety Lock Mechanism" of 1.0mm (m) Connector

Rotate the knurled parts and check the knurled screw thread. Central pin is located back side, seeing from the coupling nut side.

Same as the normal 1.0mm(m) connectors, it the coupling nut with female connector. They will be fixed under the condition that both connector's central axis is matched. Central pin has not connected yet.

Rotate the knurled parts, then let the cable side central pin forward, and insert to female connector's socket. With the help of fixed coupling nut, central axis is matched. This helps not to happen pin's slanting.

1.0 mm (f) Straigh (Code :WFS1)

Maximum Operating Frequency : 110GHz / Maximum Operating Frequency : 110GHz /

Technical Data

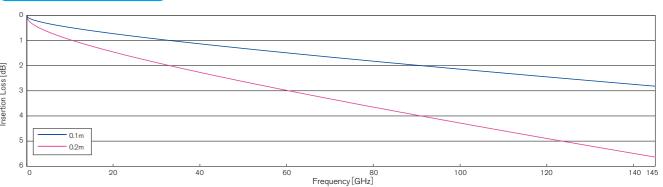
Features

- Phase Stability: Static Bending
- Phase Stability: Temperature Change
- Temperature Range: -30 to 85°C
- Maximum Operating Frequency: 145.0 GHz
 RoHS Compliant
- Days to Ship: 15 Business Days

Property

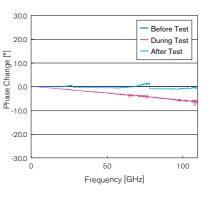
Electrical Properties

Maximum Operating Frequency	145.0 GHz
Characteristic Impedance (Typical)	50 Ω
Capacitance (Typical)	90 pF/m
Propagation Delay (Typical)	4.5 ns/m
Velocity of Propagation (Typical)	74 %
Higher Mode Frequency (Typical)	145 GHz
VSWR (Typical)	1.5
Maximum Frequency Insertion Loss (145.0 GHz)	28.1 dB/m

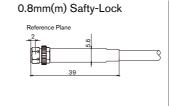

Mechanical Properties

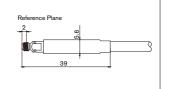
Cable Outer Diameter	4.0 mm
Minimum Bending Radius (Inner Side)	20 mm
Cable Mass (Typical)	50 g/m
Continuous Operating Temperature Range	-30~+85 °C
Armored Side Pressure	157 N/cm
Assembly Length	100~200 mm

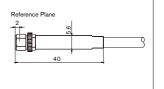
Order Form Example Please provide the following information when placing an order.

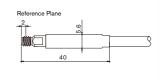

Example MWX004	* See P. 0-4 "Connector Codes"
Assembly Length: 100 mm Connector I : 1.0 mm (f) Straight Connector II : 1.0 mm (m) Straight	a. Cable
Catalog No. MWX004-00100MFSMMT/B	b. Assembly Lengthc. Connectord. Armored

Cable Typical Insertion Loss


 $\textbf{Typical Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Maximum Insertion Loss} \ (0.1 \times f[\text{GHz}] + 1.1 \times \sqrt{f[\text{GHz}] + 0.4}) \times 1.12 \times L[m] \\ \textbf{Ma$

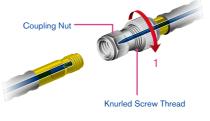

Static Bending Data (Insertion Loss, Phase) Bending Radius: 15mm




* The cable was wrapped 90° around ø30mm mandrel.

Connector

How to Use "Safety Lock Mechanism" of 1.0mm / 0.8mm (m) Connector


Rotate the knurled parts and check the knurled screw thread. Central pin is located back side, seeing from the coupling nut side.

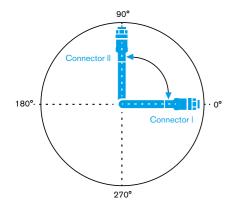
Same as the normal 1.0 / 0.8mm(m) connectors, it the coupling nut with female connector. They will be fixed under the condition that both connector's central axis is matched. Central pin has not connected yet.

Rotate the knurled parts, then let the cable side central pin forward, and insert to female connector's socket. With the help of fixed coupling nut, central axis is matched. This helps not to happen pin's slanting.

Series Common Properties

Connector Insertion Loss [dB/connector]

Connector Type	Connector							
Connector Type	Insertion Loss	1.0 GHz	10.0 GHz	18.5 GHz	26.5 GHz	40.0 GHz	50.0 GHz	67.0 GHz
SSMA (m) Straight	0.03√f	0.03	0.09	0.13	-	-	-	-
SMA (m) Straight	0.03√f	0.03	0.09	0.13	0.15	0.19	-	-
SMA (f) Straight	0.03√f	0.03	0.09	0.13	-	-	-	-
SMA (m) Right Angle	0.07√f	0.07	0.22	0.3	-	-	-	-
SMA (m) Swept	0.04√f	0.04	0.13	0.17	-	-	-	-
TNC (m) Straight	0.07√f	0.07	0.22	0.3	=	-	=	=
N (m) Straight	0.05√f	0.05	0.16	0.22	-	-	-	-
N (f) Straight	0.05√f	0.05	0.16	0.22	-	-	-	-
N (m) Swept	0.06√f	0.06	0.19	0.26	-	-	-	-
SMP (f) Straight	0.12√f	0.12	0.38	0.52	-	-	-	-
SMPM (f) Straight	0.12√f	0.12	0.38	0.52	0.62	0.76	0.85	0.98
3.5mm (m) Straight	0.03√f	0.03	0.09	0.13	0.15	-	-	-
3.5mm (f) Straight	0.03√f	0.03	0.09	0.13	0.15	-	-	-
3.5mm (m) Swept	0.04√f	0.04	0.13	0.17	0.21	-	-	-
2.92mm (m) Straight	0.03√f	0.03	0.09	0.13	0.15	0.19	-	-
2.92mm (f) Straight	0.03√f	0.03	0.09	0.13	0.15	0.19	-	-
2.92mm (m) Swept	0.04√f	0.04	0.13	0.17	0.21	0.25	-	-
2.4mm (m) Straight	0.042√f	0.04	0.13	0.18	0.22	0.27	0.3	-
2.4mm (f) Straight	0.042√f	0.04	0.13	0.18	0.22	0.27	0.3	-
1.85mm (m) Straight	0.065√f	0.065	0.206	0.28	0.33	0.41	0.46	0.53
1.85mm (f) Straight	0.065√f	0.065	0.206	0.28	0.33	0.41	0.46	0.53
1.0mm (m) Straight	0.065√f	0.065	0.206	0.28	0.33	0.41	0.46	0.53
1.0mm (f) Straight	0.065√f	0.065	0.206	0.28	0.33	0.41	0.46	0.53


Tolerances for Assembly Length

Tolerance values of 0, 1, 2 and 3 series are shown below.

Please contact us if your tolerance requirements for phase matching are more stringent.

Assembly Length [mm]	Tolerance [mm]
L≦1000	±10
1000 <l≦2000< th=""><th>±20</th></l≦2000<>	±20
2000 <l≦5000< th=""><th>±50</th></l≦5000<>	±50
5000 <l< th=""><th>±100</th></l<>	±100

About Customer-Specified Swept and Right-Angle Connectors

The angle of Connector II relative to Connector I when Connector I is assumed to be at 0° (as viewed from the direction of Connector I) is indicated by three digits following the catalog number.

(The indication is omitted if the angle is 0°.) Example: If Connector II is at an angle of 90° when viewed from the direction of Connector I:

MWX312-01000AMRAMR-090

Technical Data

Return Loss - VSWR Conversion Table

Return Loss dB	Voltage Standing Wave Ratio VSWR	Reflection Coefficient
60	1.002	0.001
50	1.006	0.003
40	1.020	0.010
35	1.036	0.018
30	1.065	0.032
29	1.074	0.035
28	1.083	0.040
27	1.094	0.045
26	1.106	0.050
25	1.119	0.056
24	1.135	0.063
23	1.152	0.071
22	1.173	0.079
21	1.196	0.089
20	1.222	0.100
19	1.253	0.112
18	1.288	0.126
17	1.329	0.141
16	1.377	0.158
15	1.433	0.178
14	1.499	0.200
13	1.577	0.224
12	1.671	0.251

VSWR - Return Loss Conversion Table

Voltage Standing Wave Ratio VSWR	Return Loss dB	Reflection Coefficient	Propagation Loss dB
1.01	46.1	0.005	0.0001
1.02	40.1	0.010	0.0004
1.03	36.6	0.015	0.0010
1.04	34.2	0.020	0.0017
1.05	32.3	0.024	0.0025
1.06	30.7	0.029	0.0037
1.07	29.4	0.034	0.0050
1.08	28.3	0.038	0.0063
1.09	27.3	0.043	0.0080
1.10	26.4	0.048	0.0100
1.15	23.1	0.070	0.0213
1.20	20.8	0.091	0.0361
1.25	19.1	0.111	0.0538
1.30	17.7	0.130	0.0740
1.35	16.5	0.149	0.0975
1.40	15.6	0.167	0.1228
1.45	14.7	0.184	0.1496
1.50	14.0	0.200	0.1773
1.60	12.7	0.231	0.2382
1.70	11.7	0.259	0.3016
1.80	10.9	0.286	0.3706
1.90	10.2	0.310	0.4388
2.00	9.5	0.333	0.5104
3.00	6.0	0.500	1.2494
4.00	4.4	0.600	1.9382

1.785 0.282 11 10 1.925 0.316

Frequency Band Name and Code

Frequency [GHz]	Wavelength [cm]	Conventional frequency band (radar)	Current frequency band (ECM)	Frequency [GHz]
0.15	200 — 150 —	VHF	А	- 0.15 - 0.2
0.4			В	- 0.3 - 0.4 - 0.5
0.6 0.75	50 ——50 ——40 ——30 ——30	UHF	С	- 0.6 - 0.75
1.5	20	L	D	— 1.5
3	1510	S	E F	2 3
5 6	7.5 ——6 ——5 ——5	С	G	4 - 5 - 6
8	3.75	Х	H I	8 10
15 20	22	Ku	J	- 15 - 20
30	1	K Ka	К	_ 30
40 50 60		MILLIMETER	L	40 - 50 - 60
75 100	0.4		М	75 100

db Table

Power Ratio P2/P1	dB Dp	Current Ratio/ Voltage Ratio	dB Di·Dv
×0.01	-20dB	×0.01	-40dB
×0.1	-10dB	×0.1	-20dB
×1	0dB	×1	0dB
×2	3.0dB	×2	6.0dB
×3	4.8dB	×3	9.5dB
×4	6.0dB	×4	12.0dB
×5	7.0dB	×5	14.0dB
×6	7.8dB	×6	15.6dB
×7	8.5dB	×7	16.9dB
×8	9.0dB	×8	18.1dB
×9	9.5dB	×9	19.1dB
×10	10dB	×10	20dB
× 100	20dB	×100	40dB
×1000	30dB	×1000	60dB

Power: Dp = $10\log_{10} \frac{P_2}{P}[dB]$

Current : Di = $20\log_{10}\frac{J_2}{J_1}[dB]$

Voltage : Dv = $20\log_{10}\frac{V_2}{V_2}[dB]$

• Power level "dBm" represents the absolute value with respect to the standard 0[dBm] for 1[m/W]. P[mW] is given by 10log10P[dBm].

1. VSWR =
$$\frac{1+\rho}{1-\rho} = \frac{1+10^{-\frac{B1}{20}}}{1-10^{-\frac{B1}{20}}}$$

2. Return Loss RL (dB) =-20logρ

$$=-20\log \frac{VSWR-1}{VSWR+1}$$

3. Reflection Coefficient $\rho = (VSWR-1) /$ $(VSWR+1) = 10^{-\frac{RL}{20}}$

4. Propagation Loss α (dB) = -10log (1- ρ^2)

Relationship between frequency and wavelength $f = \frac{c}{\lambda}$ where c=2.998 × 10° [m/s]

Relationship between phase change θ [°],

frequency f [GHz],

cable length L[mm]and

propagation delay τ [nsec]

L=0.8328× θ ÷ $\sqrt{\epsilon_r}$ ÷f

 $\theta = 1.201 \times L \times \sqrt{\epsilon_r} \times f$

 θ =360×f× τ

where ϵr is the specific dielectric

constant of the cable insulator.

Air : $\epsilon r = 1$, Dense PTFE : $\epsilon r = 2.1$